Users running a quantized 7B model on a laptop expect 40+ tokens per second. A 30B MoE model on a high-end mobile device ...
A new technical paper titled “Pushing the Envelope of LLM Inference on AI-PC and Intel GPUs” was published by researcher at Intel. “The advent of ultra-low-bit LLM models (1/1.58/2-bit), which match ...
It turns out the rapid growth of AI has a massive downside: namely, spiraling power consumption, strained infrastructure and runaway environmental damage. It’s clear the status quo won’t cut it ...
Reducing the precision of model weights can make deep neural networks run faster in less GPU memory, while preserving model accuracy. If ever there were a salient example of a counter-intuitive ...